Plant D-2-hydroxyglutarate dehydrogenase participates in the catabolism of lysine especially during senescence.
نویسندگان
چکیده
D-2-Hydroxyglutarate dehydrogenase (D-2HGDH) catalyzes the specific and efficient oxidation of D-2-hydroxyglutarate (D-2HG) to 2-oxoglutarate using FAD as a cofactor. In this work, we demonstrate that D-2HGDH localizes to plant mitochondria and that its expression increases gradually during developmental and dark-induced senescence in Arabidopsis thaliana, indicating an enhanced demand of respiration of alternative substrates through this enzymatic system under these conditions. Using loss-of-function mutants in D-2HGDH (d2hgdh1) and stable isotope dilution LC-MS/MS, we found that the D-isomer of 2HG accumulated in leaves of d2hgdh1 during both forms of carbon starvation. In addition to this, d2hgdh1 presented enhanced levels of most TCA cycle intermediates and free amino acids. In contrast to the deleterious effects caused by a deficiency in D-2HGDH in humans, d2hgdh1 and overexpressing lines of D-2HGDH showed normal developmental and senescence phenotypes, indicating a mild role of D-2HGDH in the tested conditions. Moreover, metabolic fingerprinting of leaves of plants grown in media supplemented with putative precursors indicated that D-2HG most probably originates during the catabolism of lysine. Finally, the L-isomer of 2HG was also detected in leaf extracts, indicating that both chiral forms of 2HG participate in plant metabolism.
منابع مشابه
Analysis of a range of catabolic mutants provides evidence that phytanoyl-coenzyme A does not act as a substrate of the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex in Arabidopsis during dark-induced senescence.
The process of dark-induced senescence in plants is not fully understood, however, the functional involvement of an electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO), has been demonstrated. Recent studies have revealed that the enzymes isovaleryl-coenzyme A (CoA) dehydrogenase and 2-hydroxyglutarate dehydrogenase act as important electron donors...
متن کاملRegulation of lysine catabolism through lysine-ketoglutarate reductase and saccharopine dehydrogenase in Arabidopsis.
In plant and mammalian cells, excess lysine is catabolized by a pathway that is initiated by two enzymes, namely, lysine-ketoglutarate reductase and saccharopine dehydrogenase. In this study, we report the cloning of an Arabidopsis cDNA encoding a bifunctional polypeptide that contains both of these enzyme activities linked to each other. RNA gel blot analysis identified two mRNA bands-a large ...
متن کاملPotential mechanisms linking SIRT activity and hypoxic 2-hydroxyglutarate generation: no role for direct enzyme (de)acetylation.
2-Hydroxyglutarate (2-HG) is a hypoxic metabolite with potentially important epigenetic signaling roles. The mechanisms underlying 2-HG generation are poorly understood, but evidence suggests a potential regulatory role for the sirtuin family of lysine deacetylases. Thus, we hypothesized that the acetylation status of the major 2-HG-generating enzymes [lactate dehydrogenase (LDH), isocitrate de...
متن کاملA T-DNA insertion knockout of the bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase gene elevates lysine levels in Arabidopsis seeds.
Plants possess both anabolic and catabolic pathways for the essential amino acid lysine (Lys). However, although the biosynthetic pathway was clearly shown to regulate Lys accumulation in plants, the functional significance of Lys catabolism has not been experimentally elucidated. To address this issue, we have isolated an Arabidopsis knockout mutant with a T-DNA inserted into exon 13 of the ge...
متن کاملDisease-related metabolites in culture medium of fibroblasts from patients with D-2-hydroxyglutaric aciduria, L-2-hydroxyglutaric aciduria, and combined D/L-2-hydroxyglutaric aciduria.
BACKGROUND D-2-Hydroxyglutaric aciduria (D-2-HGA), L-2-hydroxyglutaric aciduria (L-2-HGA), and the combined D/L-2-hydroxyglutaric aciduria (D/L-2-HGA) are poorly understood organic acidurias. To investigate the usefulness of cultured human skin fibroblasts for both diagnostic and research purposes, we measured disease-related metabolites in the cell culture medium. METHODS We measured D-2-hyd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 286 13 شماره
صفحات -
تاریخ انتشار 2011